

Generic Programming in FORTRAN Language: Realization of
High-Performance Generic Container by Using Preprocessor

Ruihua Zhua, Lina Ning
Department of Physics, Mudanjiang Normal University, Mudanjiang 157012, China

aruihuazhu@126.com

Keywords: Generic programming, generic container, FORTRAN, preprocessor

Abstract: The Performance of several containers, including the generic type containers simulated
by object-oriented programming in FORTRAN language and the ordinary container also written in
FORTRAN language, are investigated. The container of highest performance and the lowest
performance is the ordinary container and the generic container by object-oriented programming,
respectively. In order to achieve a high-performance generic container, a preprocessor is written
used to translate the generic programming codes to the ordinary codes. With preprocessing, the
abstract programming and high-performance codes are implemented at the same time.

1. Introduction
Generic programming is dedicated to writing highly reusable code, which greatly reduces the

amount of program code and improves code maintainability [1-5]. Generic containers, as
achievements of generic programming, have been implemented in a variety of computer languages
and are widely used in the development of various software. A famous generic container is due to the
Standard Template Library (STL) as a part of the c plus plus language [6].

However generic programming is not directly supported by the FORTRAN language, according
to the FORTRAN 2008 standard. But the generic containers in FORTRAN language are still
intriguing topics, for there are a lot of libraries to simulate generic containers [7-10]. The difficulty to
archive a type safe generic container is memory operations such as the location of memory and data
copy. These matters are usually treated by three ways, such as using mixing programming, using the
object-oriented types and virtual copy functions. Both the memory and data operations govern the
performance of generic containers. Thus, the performance of the generic containers is quite different,
which will be discussed in the after section.

2. Performance of the different kind of containers
Vectors are sequence containers representing arrays that can change in size, which are well

realized by different libraries and extensively used. Four kinds of vector are selected for comparison.
The First container is from the open source project qcontainer in GitHub and the main contributor to
the project is darmar-lt [7]. This project is written by mixing programming with c and FORTRAN.
The second container is written by using “type (*)” and “select type” which are object-oriented
grammar added by FORTRAN 2003 standard. The third container is just a common container
written in FORTRAN language. At last, the c plus plus STL vector container are added to this
comparison.

In order to show the time performance of the four containers, a comparison is performed based on
the “push_back () function. This function adds a new element at the end of the vector, after its
current last element. If and only if the new size surpasses the current vector capacity, the capacity
will be increased by one. Programs are written to push serial integers to each container, and finally
show the time during the push-operation in running the program. The first container library is
compiled using its “makefile”. The test programs of the first, second and third programs are
compiled by gfortran compiler with “-O3” optimization indication. The test program using c plus

2019 2nd International Conference on Information Science and Electronic Technology (ISET 2019)

Published by CSP © 2019 the Authors 116

plus vector container are compiled by g++ compiler with “-Ofast” optimization indication. These
programs are running in a computer with I7 4790 CPU under Ubuntu operating system.

The run time in seconds of each containers are shown in table 1. It’s clear that the time used of
these operations are increased almost linearly with the increasing of cycle times, since the time used
per cycles are nearly constant. It’s clear that ordinary containers used least time and object-oriented
container used most time. The program with qcontainer use more time than the program with c plus
plus STD. The “select type” sentence used in the object-oriented containers which is necessary for
the data copy operations, cost additional time. It’s the reason for the weakness performance of the
object-oriented containers. The qcontainer library is worked by passing data through an interface to c
library, this data passing progress will also cost some time. Although the time performance is based
on the “push_back” function, we believe similar results will be presented on the test of other
functions such as “insert” or “remove” functions.

It seems that abstract and performance are trade-off relations in code programming and it’s
difficult to have both abstract and high-performance codes. In some time, computer runs heavy load
calculations, the weak performance of the object-oriented container will be impressive. An
object-oriented container is used depends on whether we can tolerate its poor time performance.

However, the poor time performance is not due original to the generic programming but due to
the simulations of generic programming. The generic container also can be established as its original
process of generic programming. The progress is down as follow. First, it’s necessary to write a
template with generic types. Second, a code generator as a preprocessor are used which
automatically translate generic codes to common codes, according to the template. The programs
compiled after the translation will performs as common codes, without restriction of the trade-off
relations.

After sections of this paper are mainly about how to write the template and the preprocessor.
Table. 1 The time performance of the different containers

loop times qcontainer object-oriented container ordinary container c plus plus std
1000000 0.0149 0.0159 0.0045 0.0077
10000000 0.1269 0.1715 0.0523 0.0854
100000000 1.1849 1.5093 0.4393 0.6952

3. The container templates in Fortran language
A vector template is written in FORTRAN language, which are composed of two parts. The one

is the declaration of the container type and the other is realization of member functions. The shape of
declaration of the container type are shown in Figure 1, and one detailed member functions
“push_back_fun” are shown in figure 2.

Figure. 1 the declaration of the type declarations

117

Figure. 2 the realization of the member function

The notation of “<<container_name>>” and “<<type_name>>” marked by “<<” and “>>”
Appears in the template both the declaration partition and the realization partition. They are

generic names which should be replaced by detailed container name and detailed type name
respectively, while the template is used. As normal type declarations, the container name can’t be
repeated in one function, in one module or in the main program. The container name precedes the
name of the target member function in order to prevent duplication with the name of the other
container's member function. This method is general which can be applied to containers of other type,
such as list, map and so on. The member variable of “capacity” and the member variable of “used” is
for saving the used capacity and the used capacity of the vector, respectively.

The subroutine “<<container_name>>_push_back_sub” is worked for save new data at the end of
the vector. If the vector is full, the subroutine begins with the memory operations. In this condition,

The “capacity” is equivalent to “used”, and vector is of no capacity for the new income data. It’s
necessary to allocate new memories for both the new data and previous data. If the “capacity” of the
vector is zero, it is necessary to locate “ptr” with size equivalent to one. If the capacity is greater than
zero, the new memory by “midptr” will be located whose size is one times larger than the previous.
After that, copy the “ptr” to “midptr” release “ptr” and set “ptr” to the pointer “midptr”. After the
location and the copy operations if necessary, then appending the new data to the end of the used
data.

There are some notations about the previous location function. Since the “allocate” function has
the “source” parameter. An idea is by combine the location operation and the copy operation into the
allocate operations like in figure 3. However, it’s unsure that we can allocate memory larger than
memory of source. The location functions in figure 3 will pass the compiling progress, but the
running result is different due to different compilers. A wrong result will be presented, during
running the program compiled by the Intel FORTRAN 2019 compiler and a correct result will be
shown during running the program compiled by GCC compiler. However, combining the location
and copy operations show nearly no better time performance than doing the location operation and
the copy operation independently as shown in Figure 4.

It’s also need to pay attention to the copy of data. If the type is an intrinsic type of FORTRAN,
such as integer, double precision, and so on, no extra work is required. However, if it’s a
user-defined type, it’s necessary to overload the “=” operator which ensure a deep copy.

118

Figure. 3 combining the location and the copy operatons.

Figure. 4 doing location and copy separately

4. Preproccessor with the template
The preprocessor is code generators which translate the generic codes to common codes and place

it to the proper position of the input documents. An example of code generator for FORTRAN
language is given by [12].

The input to the preprocessor is a document file and the output of the preprocessor is a
FORTRAN source code file. The preprocessor works begin with scanning the input files for the
derive sentence like this “! PCF vector<integer> vint”. The “! PCF” is a declaration which is short
for “Preprocess containers in Fortran”. The “vector” is declared the container types. The “integer”
between the “<” and “>” are the type name and “vint” is the container name. These derive sentences
works as declaring a new type whose name is “vint”, in the after section, the “vint” type variable can
be declared by the sentence “type (vint): v1”.

It’s easy for preprocessor to locate the derive sentence. However, there are something should be
treated carefully in the type declaration. If the type name is an intrinsic type of FORTRAN, this type
variable is usually declared by the sentence “integer: a”. However, if a type is a derived type, this
type variable must be declared like this sentence “type (some_type): a”. The “type ()” must be
presented. Hence, a direct method is by determining the type between the “<” and “>” whether it’s
an intrinsic type or a derived type. However, the sentence “type (integer): a” is also accepted by most
compilers. All the types can be treated as derived types if you like.

The generated code of the container type declaration, should directly replace the derive sentence
and placed in the output document, but codes of member functions should be placed in the “contains”
partition of program subroutines, functions or modules. Sometimes, functions and functions are
nested together, the member functions can’t be placed directly. An integer variable “layer” is used.
The layer is initialized by zero, and vary during scanning the input document. If scanner reads “start
flags” such as “subroutine”, “function” or “module” that “module” can’t be “module, procedure”,
layer will be increased by one. If the scanner reads end flags such as “end subroutine”, “end function”
or “end module”, layer will be decreased by one. The codes of member functions are generated with
the declaration of the container types, but it is pushed into a stack together with the layer number.
While scanner read end flags, it should compare the layer in the top of the stack. If the layer is
equivalent to the layer in the top of stack then insert the codes before the end flag and pop the stack.
The previous operation will be done until the layer is different with the layer in the top of the stack or
the stack is empty.

According to previous method a code generator as a preprocessor are written by c plus plus
language and it’s compiled by g++ compiler. The test codes are written with the derive sentence
according to the preprocessor. The target codes generated by the preprocessor are well compiled by
the gfortran compiler, which has the same time performance with the hand-writing containers.

119

5. Conclusion
A generic container in FORTRAN language can be achieved by using preprocessor which is

worked as a code generator. The quality of the codes generated by the preprocessor is the same as
hand-writing codes for the same performance of programs compiled from the two kinds of codes.
The method to writing the preprocessor is discussed in detail. These methods are generic, not only
for writing vector type containers, but also for other type containers, such as map and list as well as
generic functions.

Acknowledgments
This work was financially supported by the recording project of educational department of

Heilongjiang province though grant number 1352MSYYB011 and it’s also supported by youth
project of by Mudanjiang Normal University with grant number YB2017004.

References
[1] D.R. Musser, A.A. Stepanov, Generic programming, Lecture notes in computer science 358
(1989) 13-25.
[2] R. Backhouse, P. Jansson, J. Jeuring, L. Meertens, Generic programming - An introduction,
Lecture notes in computer science 1608 (1999) 28-115.
[3] J.C. Dehnert, A. Stepanov, Fundamentals of generic programming, Lecture notes in computer
science 1766 (2000) 1-11.
[4] J.G. Siek, A. Lumsdaine, A language for generic programming in the large, Science of computer
programming 76 (2011) 423–465.
[5] D. Gregor, J. Jarvi, M. Kulkarni, A. Lumsdaine, D. Musser, S. Schupp, Generic programming
and high-performance libraries, International journal of parallel programming 33 (2005) 145-164.
[6] C. Grelck, H. Wiesinger, Persistent asynchronous adaptive apecialization for generic array
programming, International journal of parallel programming 47 (2019) 164.
[7] A. Davidson, Generic containers in c++, Dr Dobbs Journal, 16 (1991) 50.
[8] Qcontainer on https://github.com/darmar-lt/qcontainers
[9] FIAT on https://github.com/Fortran-FOSS-Programmers/FIAT
[10] Fortran-container on https://github.com/dongli/fortran-container
[11] Fortran-collections on https://github.com/bast/fortran-collections
[12] M.V. Waveren C. Addison, P. Harrison, D. Orange, N. Brown, H. Iwashita, Code generator for
the HPF library and Fortran 95 transformational functions, Concurrency Computat.: Pract. Exper.
14 (2002) 589–602.

120

	1. Introduction
	2. Performance of the different kind of containers
	3. The container templates in Fortran language
	4. Preproccessor with the template
	5. Conclusion
	Acknowledgments
	References

